Hypergraphs with many Kneser colorings
نویسندگان
چکیده
منابع مشابه
Hypergraphs with many Kneser colorings
For fixed positive integers r, k and ` with 1 ≤ ` < r and an r-uniform hypergraph H, let κ(H, k, `) denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least ` elements. Consider the function KC(n, r, k, `) = maxH∈Hn κ(H, k, `), where the maximum runs over the family Hn of all r-uniform hypergraphs on n vertices. In...
متن کاملKneser Colorings of Uniform Hypergraphs
For xed positive integers r, k and ` with ` < r, and an r-uniform hypergraph H, let κ(H, k, `) denote the number of k-colorings of the set of hyperedges of H for which any two hyperedges in the same color class intersect in at least ` vertices. Consider the function KC(n, r, k, `) = maxH∈Hn κ(H, k, `), where the maximum runs over the family Hn of all r-uniform hypergraphs on n vertices. In this...
متن کاملA structural result for hypergraphs with many restricted edge colorings
For k-uniform hypergraphs F and H and an integer r ≥ 2, let cr,F (H) denote the number of r-colorings of the set of hyperedges of H with no monochromatic copy of F and let cr,F (n) = maxH∈Hn cr,F (H), where the maximum runs over the family Hn of all k-uniform hypergraphs on n vertices. Moreover, let ex(n, F ) be the usual Turán function, i.e., the maximum number of hyperedges of an n-vertex k-u...
متن کاملOn generalized Kneser hypergraph colorings
In Ziegler (2002), the second author presented a lower bound for the chromatic numbers of hypergraphs KG sS, “generalized r-uniform Kneser hypergraphs with intersection multiplicities s.” It generalized previous lower bounds by Kř́ıž (1992/2000) for the case s = (1, . . . , 1) without intersection multiplicities, and by Sarkaria (1990) for S = ([n] k ) . Here we discuss subtleties and difficulti...
متن کاملRandom Kneser graphs and hypergraphs
A Kneser graph KGn,k is a graph whose vertices are all k-element subsets of [n], with two vertices connected if and only if the corresponding sets do not intersect. A famous result due to Lovász states that the chromatic number of a Kneser graph KGn,k is equal to n − 2k + 2. In this paper we discuss the chromatic number of random Kneser graphs and hypergraphs. It was studied in two recent paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: European Journal of Combinatorics
سال: 2012
ISSN: 0195-6698
DOI: 10.1016/j.ejc.2011.09.025